A342/A542 クイック接続ガイド (通信)

評価ボード・キット、開発ツールご使用上の注意事項

- 本評価ボード・キット、開発ツールは、お客様での技術的評価、動作の確認および開発のみに用いられることを想定し設計されています。それらの技術評価・開発等の目的以外には使用しないで下さい。本品は、完成品に対する設計品質に適合していません。
- 本評価ボード・キット、開発ツールは、電子エンジニア向けであり、消費者向け製品ではありません。お客様において、適切な使用と安全に配慮願います。弊社は、本品を用いることで発生する損害や火災に対し、いかなる責も負いかねます。通常の使用においても、異常がある場合は使用を中止して下さい。
- 3. 本評価ボード・キット、開発ツールに用いられる部品は、予告無く変更されることがあります。

● 本マニュアルのご使用につきましては、次の点にご留意願います。

- 本資料の内容については、予告無く変更することがあります。弊社製品のご購入およびご使用にあたりましては事前に弊社 営業窓口で最新の情報をご確認いただきますとともに、弊社ホームページなどを通じて公開される最新情報に常にご注意く ださい。
- 2. 本資料の一部または全部を、弊社に無断で転載または複製など他の目的に使用することは堅くお断りします。
- 本資料に掲載されている応用回路、プログラム、使用方法などはあくまでも参考情報であり、これらに起因する第三者の知 的財権およびその他の権利侵害ならびに損害の発生に対し、弊社はいかなる保証を行うものではありません。また、本資料 によって第三者または弊社の知的財産権およびその他の権利の実施権の許諾を行うものではありません。
- 4. 弊社製品のご使用にあたりましては、弊社製品の誤作動や故障により生命・身体に危害を及ぼすこと又は財産が侵害されることのないように、お客様の責任において、お客様のハードウエア、ソフトウエア、システムに必要な安全設計を行うようお願いします。なお、設計および使用に際しては、弊社製品に関する最新の情報(本資料、仕様書、データシート、マニュアル、弊社ホームページなど)をご確認いただき、それに従ってください。また、上記資料などに掲載されている製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価を行い、お客様の責任において適用可否の判断をお願いします。
- 5. 弊社は、正確さを期すために慎重に本資料を作成しておりますが、本資料に掲載されている情報に誤りがないことを保証す るものではありません。万一、本資料に掲載されている情報の誤りによってお客様に損害が生じた場合においても、弊社は 一切その責任を負いかねます。
- 6. 弊社製品の分解、解析、リバースエンジニアリング、改造、改変、翻案、複製などは堅くお断りします。
- 弊社製品は、一般電子機器製品用途および弊社指定用途に使用されることを意図して設計、開発、製造しています(指定用途)。

この指定用途の範囲を超えて、特別または高度な品質、信頼性が要求され、その誤動作や故障により生命・身体に危害を及 ぼす恐れ、膨大な財物損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある以下を含む用途(特定用途)に 使用されることを意図していません。

【特定用途】

宇宙機器(人工衛星・ロケットなど)/輸送車両並びにその制御機器(自動車・航空機・列車・船舶など) 医療機器/海底中継機器/発電所制御機器/防災・防犯装置/交通用機器/金融関連機器 上記と同等の信頼性を必要とする用途

お客様に置かれましては、製品を指定用途に限定して使用されることを強く推奨いたします。もし、指定用途以外の用途で 製品のご使用およびご購入を希望される場合、弊社はお客様の特定用途に弊社製品を使用されることへの商品性、適合性、 安全性について、明示的・黙示的に関わらず、いかなる保証をおこなうものではありません。お客様が特定用途での弊社製 品の使用を希望される場合は、弊社営業窓口まで事前にご連絡ください。

- 8. 本資料に掲載されている弊社製品および弊社技術を国内外の法令および規制により製造・使用・販売が禁止されている機器・システムに使用することはできません。また、弊社製品および弊社技術を大量破壊兵器等の開発目的、および軍事利用の目的、その他軍事用途等に使用しないでください。弊社製品または弊社技術を輸出または海外に提供する場合は、「外国為替及び外国為替法」、「米国輸出管理規則(EAR)」、その他輸出関連法令を遵守し、係る法令の定めるところにより必要な手続きを行ってください
- 9. 弊社は、お客様が本資料に掲載されている諸条件に反したことに起因して生じたいかなる損害(直接・間接を問わず)に関して、一切その責任を負いかねます。また、お客様が弊社製品を第三者に譲渡、貸与などをしたことにより、損害(直接・間接を問わず)が発生した場合、弊社は一切その責任を負いかねます。
- 本資料についての詳細に関するお問合せ、その他お気付きの点などがありましたら、弊社営業窓口までご連絡ください。
 本資料に掲載されている会社名、商品名は、各社の商標または登録商標です。

目次

	改定履歴
1.	イントロダクション
2.	(Step1) 接続する
3.	 (Step2) 制御の基本コマンド 3.1. レジスタ読出しコマンド (UART) 3.2. レジスタ書込みコマンド (UART) 8 3.3. レジスタ仕様 8
4.	(Step3) 起動する10
5.	(Step4) 設定する11
6.	(Step5) 計測する13
7.	(Step6) 物理量単位へ換算する
8.	お問い合わせ

改定履歴

Rev. No.	改訂日	Page	改訂内容
20220127	2022/1/27	ALL	初版制定
20220308	2022/3/8	ALL	誤記訂正

1. イントロダクション

本資料は、振動センサーA342/A542の通信制御の導入作業を、より早く簡単に行う為の資料です。UARTの自動サンプ リングモードによる制御について説明します。その他の計測モード(UARTバースト、SPIバースト/ノーマル)やレジスタ の詳細仕様などについては、最新版のデータシートを参照して下さい。

本資料では、下記 1) 2)の計測方法について、表 1.1 の Step1 ~ Step6 の手順に従い説明します。

<u>1) 3000 Sps の速度 RAW データ計測</u>

- 周波数解析やリサージュ解析などの振動解析を行う場合
- ISO10816 判定に必要な RMS 計算をホスト機器(パソコン等)で行う場合、など
- A342/A542 速度 RAW 出力の例を図 1.1 に示します。

<u>2) 1 Sps の速度 RMS データ計測</u>

- センサーの速度 RMS 出力を使用して ISO10816 判定を行う場合、など ※低サンプリングレート(0.1 s ~ 25.5 s)でかつホスト機器での RMS 計算が不要な為、ホスト機器の処理負荷が低 減できます。
- A342/A542 速度 RMS 出力の例を図 1.2 に示します。

図 1.1 A342/A542 速度 RAW 出力

図 1.2 A342/A542 速度 RMS 出力

表 1.1 本資料の説明手順

Step	内容
(1) 接続する	センサーとホスト機器とのインターフェース接続の説明です。
(2) 制御の基本コマンド	センサー制御の基本コマンドの説明です。Step 3~5 で使用します。
(3) 起動する	電源投入から初期化完了までの説明です。
(4) 設定する	出力物理量設定を例にしたセンサーの設定手順の説明です。
(5) 計測する	UART 自動送信モードを使用する場合の計測制御の説明です。
(6) 物理量単位へ換算する	取得したデータ(Binary データ)の物理量への単位換算方法の説明です。

2. (Step1) 接続する

2.1. 機器の接続構成

センサーをホスト機器(MCU、パソコン等)に接続します。以下に接続構成例を示します。 詳細については、別紙「A542A342_A552A352_クイック接続ガイド(インターフェイス).pdf」をご参照下さい。

図 2.1 A342/A542 接続構成例

2.2. シリアルインターフェース接続

センサーをシリアルインターフェースでホスト機器に接続して下さい。電源および I/F は 3.3v です。電源のノイズ対策は 必要に応じて実施して下さい。以下に接続図と通信条件を示します。

図 2.2 接続図

表 2.1 通信条件

項目	A342 設定値
転送速度	460.8 kbps (出荷時) ※115.2 kbps / 230.4 kbps / 921.6 kbps も選択可能です。
スタート	1ビット
データ	8ビット
ストップ	1ビット
パリティ	なし
デリミタ	CR (0x0D)

3. (Step2) 制御の基本コマンド

センサーの制御は、コマンドを送信し機能が割り振られた特定のレジスタにアクセスすることで行われます。ここではコ マンドによるセンサー制御の基本的な方法を説明します。

3.1. レジスタ読出しコマンド (UART)

UARTの読み出しコマンドをセンサーに送信することで、レジスタの格納データを16 bit 単位で読み出すことができます。 これによりレジスタに格納されているセンサーの各種設定値やステータス情報を取得します。

読み出しコマンド形式は、1st byte がレジスタアドレス、2nd byte は未使用(引数の指定なし)、3rd byte はデリミタ(0x0d) です。読み出しコマンドの 1st byte: bit [7]は、"0"固定です。例えば MODE_CTRL レジスタを読み出す場合、1st byte には、 MODE_CTRL レジスタの下位アドレス 0x02 がそのまま入ります。

応答形式は、1st byte がレジスタアドレス、2nd - 3rd byte が 16 bit 読み出しデータ、4th byte はデリミタ(0x0d)です。 以下に読出しタイミング、コマンド形式、読出し例を示します。

図 3.1 読出しタイミング(460.8 kbps)

表 3.1 読み出し形式

			1st I	byte	;			2nd byte							3rd byte								
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0			Α	[6:0)]						Х	Х							0x	0D			

A [6:0] ・・・ レジスタアドレス(偶数アドレス) XX ・・・ Don't Care 0x0D ・・・ デリミタ

表 3.2 応答形式

			1st	byte	;				2nd byte						3rd byte								4th byte								
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0			Α	. [6:0)]						D[1	5:8]							D[7	7:0]							0x	0D			

A [6:0] ・・・ レジスタアドレス(偶数)

D [15:8] ・・・ レジスタ読出しデータ(上位バイト)

D [7:0] ··· レジスタ読出しデータ(下位バイト) 0x0D ··· デリミタ

<u>読出し例</u>

3.2. レジスタ書込みコマンド(UART)

UARTの書込みコマンドをセンサーに送信すると、レジスタ書込みデータが8bit単位で書き込まれます。この書込みによりセンサーの各種設定や計測動作の制御が行えます。書込みコマンドに対する応答はありません。

書込みコマンド形式は、1st byte がレジスタアドレス、2nd byte は書込みデータ、3rd byte はデリミタ(0x0d)です。書 込みコマンドの bit [7]は、"1"固定です。例えば、MODE_CTRL レジスタの上位アドレス 0x03 (00000011b) ヘデータを書 き込む場合、アドレスの先頭に"1"を加えて 0x83 (10000011b) になります。

以下に書込みタイミング、コマンド形式、書込み例を示します。

図 3.2 書込みタイミング(460.8 kbps)

表 3.3 コマンドス	フォーマット	(ライト)
-------------	--------	-------

1st byte 2nd byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0											3rd byte													
-	7	6	5	4	3	2	1	0	7	6	5	4	З	2	1	0	7	6	5	4	3	2	1	0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 1 A[6:0] D[7:0] D[7:0] OxOD																								

A [6:0] ··· レジスタアドレス (偶数 or 奇数) D [7:0] ··· レジスタ書込みデータ 0x0D ··· デリミタ

<u>書込み例</u>

MODE_CTRL レジスタに"0x01"を書込み、サンプリングモードに移行します。 送信: {*0x83, 0x01, 0x0d*}. /* MODE_CTRL (L) への書込み、サンプリングモードに移行 */ 1st byte: 0x83 は、MODE_CTRL の上位アドレス 0x03 の bit [7]を1にした値です。 2nd byte: 0x01 により、サンプリングモードへの移行を実行します。 3rd byte: 0x0d は、デリミタです。

3.3. レジスタ仕様

コマンドでセンサーを制御する為には、以下のレジスタ仕様についての理解が必要です。具体的な使用事例は、Step3 ~ Step5 の処理フローを参照して下さい。

レジスタフォーマット、コマンド制御の基本

- 各レジスタは、16 bit データ長で 8 bit 毎にアドレスが割当てられています。読出し時は 16 bit 単位、書込み時は 8 bit 単位でアクセスを行います。16 bit レジスタ内のデータ配置は、リトルエンディアンで配置されています。
- 本製品のレジスタは WINDOW 方式です。WIN_CTRL レジスタの WINDOW_ID に所定のウィンドウ番号を設定した 後、所望のレジスタアドレスにアクセスして下さい。各レジスタのウィンドウ番号はレジスタマップに示されていま すが、基本的には下記の1)2)の様に場合分けされています。

1) センサーの設定は、WINDOW_ID = 1 のコンフィグモードで行います。

- 2)計測値の読出しは、WINDOW_ID=0のサンプリングモードで行います。
- 起動後のレジスタの初期値は、レジスタマップの"Default"に示された値です。

以下に Step3 ~ Step5 で使用するレジスタマップを示します。

Name	Window ID	Address	^(*1) Read コマンド 16 bit 読出	Write コマンド 8 bit 書込	R/W	Flash Backup	Default	Function
	0	0x02	0,0288	-	-	_	0x00	動作エード制御
WODE_CIRE	0	0x03	0X0277	0x83	R/W		0x04	動作で一下動陣
	0	0x04	0×04XX	-	R	_	0x00	診断結甲 1
DIAG_STATT	0	0x05	0X0477	-	R		0x00	彭州和朱丁
	1	0x00	0,000	0x80	R/W	0	0x00	ND フラグ制御
SIG_CTRL	I	0x01	0x00xx	0x81	R/W	0	0x8E	出力物理量制御
	1	0x04	0×04XX	0x84	R/W	\sim	0x07	エンゴロング地の
SMPL_CIRL	I	0x05	0X0477	0x85	R/W	0	0x0A	リンフリング制御
	1	0x0A	0×04.77	0x8A	R/W	_	0x00	シュニノ生物
GLOB_CIVID	I	0x0B	UXUAAA	-	R		0x00	シスノム前仰
DUDET CTDI	1	0x0C	0×00×1	0x8C	R/W	0	0x00	バニフト 生化 知
WIN_CTRL	I	0x0D		0x8D	R/W	0	0x47	ハースト制御
	0,1	0x7E	0x7EXX	0xFE	R/W	_	0x00	レジスタウィンドウ 制御

表 3.4 Step3 ~ Step5 で使用するレジスタマップ

*1) 下位バイト XX: Don't Care

4. (Step3) 起動する

センサーの起動方法について説明します。

下記の状態遷移図に示すとおり、センサーに 3.3V 電源を印可するとセンサーは内部の初期化を始めます。

初期化動作(Power-On Start-Up Time = 800 ms Max.)の間は、センサーへのアクセスは行わないで下さい。初期化後、 DIAG_STAT1 レジスタにより起動時のハードウェアチェックの結果が読み出せます。起動処理が完了したら、センサーの制 御を開始して下さい。以下に起動処理フローを示します。

5. (Step4) 設定する

出力物理量の設定を例にセンサーの設定方法について説明します。

下記の状態遷移図に示すとおり、初期化後は自動的にコンフィグモードに移行します。センサーの各種設定はこのコンフ ィグモードで行って下さい。

図 5.1 状態遷移図(コンフィグモード)

以下に、代表的なセンサー設定(表 5.1)の具体的な処理手順について説明します。

設定	1)速度 RAW (出荷設定)	2)速度 RMS
UART 転送速度	460.8 kbps	460.8 kbps
UART 出力モード	自動モード	自動モード
出力物理量	速度 RAW	▶ 速度 RMS
出力フォーマット	TEMP2 + 速度 XYZ	TEMP2 + 速度 XYZ
RAW 出力データレート	3000 Sps (変更不可)	3000 Sps (変更不可)
RMS 出力データレート/更新レート	1 s / 0.6826 s	1 s / 0.6826 s

表 5.1 センサー設定値の代表例

<u>1) 3000 Sps、速度 RAW</u>

本設定は出荷時の設定である為、設定変更の操作は不要です。すぐに計測を開始できます。「(Step5) 計測する」にお進み 下さい。

2) 1 Sps、速度 RMS

ここでは、出荷時の設定から変更する場合について説明します。

基本的に設定変更を行う場合は、まず WIN_CTRL レジスタで WINDOW_ID を "1"に切り替えて、その後に設定変更したいレジスタに設定値を書込んで下さい。

本設定(速度 RMS)の処理フローを図 5.2 に示します。出力物理量を速度 RMS に変更するには、**OUTPUT_SEL** に "速度 RMS: 0001"を設定して下さい。必要に応じて出力データレートと更新レートを変更することも可能です。また、速度 RMS から速度 RAW に戻す手順も本設定フローと同じです。このときは出力物理量 **OUTPUT_SEL** に "速度 RAW: 0000"を設定して下さい。

図 5.2 設定処理フロー (速度 RMS)

6. (Step5) 計測する

センサー計測データの読み出し方法について説明します。

下記の状態遷移図に示すとおり、MODE_CTRL レジスタの **MODE_CMD** に "01"を書き込むことによりコンフィグモードからサンプリングモードに移行し、計測を開始します。また **MODE_CMD** に "10"を書き込むことにより、サンプリング モードからコンフィグモードに移行し、計測を終了します。MODE_CTRL レジスタへの書込みは、**WINDOW_ID**=0の状態 で行って下さい。

図 6.1 状態遷移図 (サンプリングモード)

サンプリングモードに移行すると計測データの読出しが行えます。出荷時は UART 自動サンプリングモードに設定されて いる為、図 6.2 に示すとおり、内部クロックにより生成されたサンプリングタイミング毎に自動的に計測データが送出され ます。このときの出力データフォーマットを表 6.1 に示します。出力データフォーマットは、BURST_CTRL レジスタの設 定値により決まります。

図 6.2 UART 自動サンプリング

表 6.1 出力データフォーマット(出荷設定)

BURST_CTRL [0x0C(W1)] = 0x4700 (バースト出力: 温度、XYZ) SIG_CTRL [0x00(W1)] = 0x8E00 (出力物理量: 速度、出力温度: 温度 2) Data packet size: 13 bytes

Byte No.	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
1	ADDRESS				0×	80								
2	TEMP2_H				TEMP2	2 [15:8]								
3	TEMP2_L				TEMP	2 [7:0]								
4	XVELC_HIGH_L				XVELC _HIGH [7:0]									
5	XVELC_LOW_H				XVELC_L	OW [15:8]]							
6	XVELC_LOW_L		XVELC _LOW [7:0]											
7	YVELC_HIGH_L				YVELC _I	HIGH [7:0]]							
8	YVELC_LOW_H			· · · · · ·	YVELC_L	.OW [15:8]							
9	YVELC_LOW_L				YVELC _	LOW [7:0]								
10	ZVELC_HIGH_L				ZVELC_H	HIGH [7:0]								
11	ZVELC_LOW_H			2	.OW [15:8]								
12	ZVELC_LOW_L				ZVELC _	LOW [7:0]								
13	CR				0 ×	0D								

以下に UART 自動送信サンプリングによる計測処理フローを示します。

図 6.3 計測処理フロー(UART 自動送信サンプリング)

7. (Step6) 物理量単位へ換算する

取得データ(Binary データ)を物理量単位に換算する手順について説明します。

Step5 で取得したデータ列にもとづき、各データの意味と算出式を以下に示します。速度 RAW データと速度 RMS の算出 式は同じです。TEMP2 レジスタ、XVELC/YVELC/ZVELC レジスタの仕様は図 7.1 を参照して下さい。

- 取得データ列(16 進数): 80 08 02 00 01 99 FF EC B3 00 25 5E 0D
- 1) Address = 0x80
- 2) TEMP2 = 0x0802
 - 2-1) 8BIT_TEMP = 0x08 温度算出式 T (°C) = SF x a + 34.987 = -0.9707008 × 8 + 34.987 = 27.2213936

SF: Scale Factor = -0.9707008 (°C/LSB) a: 取得した温度値 (10 進数)

2-2) フラグ情報およびカウンター値 = 0x02 構造共振エラーフラグ bit [7:5] = 000:3軸とも正常範囲内 アラーム検出フラグ bit [4:2] = 000:3 軸とも検出無し ※ALARM レジスタで設定された閾値に基づき検出。 2 bit カウンター値 bit [1:0] = 2 ※サンプリング毎にインクリメントされる。0 → 1 → 2 → 3 → 0 → …

3) VELC = 0x000199, 0xFFECB3, 0x00255E

速度算出式 (m/s) = a × SF

SF: Scale Factor = $2^{-22} \approx 2.38 \times 10^{-4}$ ((mm/s)/LSB) a: 取得した速度値 (10 進数)

- 3-1) XVELC = 0x000199 = 409 X速度值 = 409 × 2⁻²² ≒ 0.098 (mm/s)
- 3-2) YVELC = 0xFFECB3 → -4941 ※負数(符号部 bit [23] = 1) である為、2の補数で変換する。 Y 速度值 = -4941 × 2⁻²² ≒ -1.178 (mm/s)
- 3-3) ZVELC = 0x00255E = 9566 Z速度值 = 9566 × 2⁻²² ≒ 2.281 (mm/s)

4) Delimiter = 0x0D

TEMP2 Register

	-														
Addr (Hex)	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	R/W						
0x2F				8BIT_	TEMP				R						
Addr (Hex)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W						
0x2E	X_EXI Y_EXI Z_EXI XALARM YALARM ZALARM ZALARM _ERR _ERR _ERR _ERR _ERR 2BIT_COUNT 8BIT_TEMP 温度センサー出力データ (8 bit) R数の温度センサー価値表示しまっとができます。														
oit [15:8]	8BIT TEMP														
大制只由	「学校の温度」	3IT_TEMP 温度センサー出力データ (8 bit) 載の温度センサー値を読み出すことができます。													
小麦面と	答載の温度センサー値を読み出すことができます。 タフォーマットは 8ピット 2の結約形式です スケールファクターは 素 13 センサー部仕様を参照														
田 カテー	タフォーマットは、8 ビット、2 の補数形式です。スケールファクターは、表 1.3 センサー部仕様を参照														
てくたさ	い。摂氏温度への換算は下式を参照してください。ただし内部温度の絶対値を保証するものではありません														
	Tsbt (°C) = SFsbt × a + 34.987														
	Твык (°C) = SFвык × a + 34.987 SF: Scale Factor														
				温度センサ	ールカデータ	(10) 准数)									
X軸の入 1:構造 2:計 bit[6] Y 4軸の入 1:構造 0:計測[2:輸の入 1:構造 0:計測[bit[5] Z 2 軸の入 1:構造 0:計測[bit[5] Z 2 軸の入 1:構造 0:計測[bit[5] Z 2 軸の入 1:構測中に 1:構測中に 2: 0:計測[bit[6] Y 4 1:構造 2: 0:計測[2: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	カ信号がセン 大振正常範囲 EXI_ERR 力信号がる計画 EXI_ERR 力振振に常範囲 EXI_ERR 力振振に常範囲 EXI_ERR 力振振に常範囲 ALARM_ERF ALARM_ERF	ンサー内の構 測値の異常 オ フサー内の構 測値の異常 あ 内 ンサー内の構 調値の異常 内 、サー内の構 調値の異常 ス 内 、 1 1 (0x: 1 2 2 2 2 3 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	進共振により も き も も も も も し よ り も し よ り し し し し し し し し し し し し し	通大に増幅さ 通大に増幅さ 通大に増幅さ 」の設定値をi	:れ、計測値だ :れ、計測値だ :れ、計測値だ 超えるセンサ	が異常になる が異常になる が異常になる 一値が X 軸!	と警告表示を と警告表示を と警告表示を こ入力された ¹	行います。 行います。 行います。 場合に表示し	ます。						
bit (3) YALARM_ERR 計測中にレジスタ:Y_ALARM [0x49-0x48(W1)] の設定値を超えるセンサー値がY軸に入力された場合に表示します。 : 検出あり 0:検出なし bit [2] ZALARM_ERR 計測中にレジスタ:Z_ALARM [0x4B-0x4A(W1)] の設定値を超えるセンサー値がZ軸に入力された場合に表示します。															
0:検出な bit [1:0]	ະເ 2BIT_COUN	т													

出力レート毎にカウントアップする 2 bit カウンター値を読み出すことができます。

VELC Register

Addr (Hex)	Bit15		Bit8	Bit7		Bit0	R/W
0x30	-			XVELC_HIGH_L			R
0x32	XVELC_LOW_H			XVELC_LOW_L			R
0x34		-		YVELC_HIGH_L			R
0x36	YVELC_LOW_H			YVELC_LOW_L			R
0x38		-		ZVELC_HIGH_L			R
0x3A	ZVELC_LOW_H			ZVELC_LOW_L			R

単位 (m/s) 24 bit、2 の補数

bit 23	:符号部
bit 22	: 整数部
bit 21 ~ 0	: 小数部

図 7.1 TEMP2 と VELC のレジスタ仕様

8. お問い合わせ

セイコーエプソン株式会社

MD 営業部

〒160-8801

東京都新宿区新宿4-1-6 JR新宿ミライナタワー 29F TEL (03) 6682-4322 FAX (03) 6682-5016

インターネットによる情報配信

https://www.epson.jp/prod/sensing_system/